43 research outputs found

    Continuous-time limit of dynamic games with incomplete information and a more informed player

    Full text link
    We study a two-player, zero-sum, dynamic game with incomplete information where one of the players is more informed than his opponent. We analyze the limit value as the players play more and more frequently. The more informed player observes the realization of a Markov process (X,Y) on which the payoffs depend, while the less informed player only observes Y and his opponent's actions. We show the existence of a limit value as the time span between two consecutive stages goes to zero. This value is characterized through an auxiliary optimization problem and as the unique viscosity solution of a second order Hamilton-Jacobi equation with convexity constraints

    Zero-sum stopping games with asymmetric information

    Get PDF
    We study a model of two-player, zero-sum, stopping games with asymmetric information. We assume that the payoff depends on two continuous-time Markov chains (X, Y), where X is only observed by player 1 and Y only by player 2, implying that the players have access to stopping times with respect to different filtrations. We show the existence of a value in mixed stopping times and provide a variational characterization for the value as a function of the initial distribution of the Markov chains. We also prove a verification theorem for optimal stopping rules which allows to construct optimal stopping times. Finally we use our results to solve explicitly two generic examples

    A probabilistic representation for the value of zero-sum differential games with incomplete information on both sides

    Get PDF
    We prove that for a class of zero-sum differential games with incomplete information on both sides, the value admits a probabilistic representation as the value of a zero-sum stochastic differential game with complete information, where both players control a continuous martingale. A similar representation as a control problem over discontinuous martingales was known for games with incomplete information on one side (see Cardaliaguet-Rainer [8]), and our result is a continuous-time analog of the so called splitting-game introduced in Laraki [20] and Sorin [27] in order to analyze discrete-time models. It was proved by Cardaliaguet [4, 5] that the value of the games we consider is the unique solution of some Hamilton-Jacobi equation with convexity constraints. Our result provides therefore a new probabilistic representation for solutions of Hamilton-Jacobi equations with convexity constraints as values of stochastic differential games with unbounded control spaces and unbounded volatility

    Zero-sum stopping games with asymmetric information

    Get PDF
    We study a model of two-player, zero-sum, stopping games with asymmetric information. We assume that the payoff depends on two continuous-time Markov chains (X, Y), where X is only observed by player 1 and Y only by player 2, implying that the players have access to stopping times with respect to different filtrations. We show the existence of a value in mixed stopping times and provide a variational characterization for the value as a function of the initial distribution of the Markov chains. We also prove a verification theorem for optimal stopping rules which allows to construct optimal stopping times. Finally we use our results to solve explicitly two generic examples

    A Dynkin game on assets with incomplete information on the return

    Get PDF
    This paper studies a 2-players zero-sum Dynkin game arising from pricing an option on an asset whose rate of return is unknown to both players. Using filtering techniques we first reduce the problem to a zero-sum Dynkin game on a bi-dimensional diffusion (X; Y ). Then we characterize the existence of a Nash equilibrium in pure strategies in which each player stops at the hitting time of (X; Y ) to a set with moving boundary. A detailed description of the stopping sets for the two players is provided along with global C1 regularity of the value function
    corecore